
www.aristilabs.com

CLIENT-NAME

WEB

APPLICATION AND

INFRASTRUCTURE

VULNERABILITY

ASSESSMENT

REPORT

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

www.aristilabs.com

Report for Sample Penetration Test Report

Client contact +1 (xxx) xxx xxx

Report title Client Name: Web application security and Infrastructure vulnerability

report

Date 2019

Version 1.0

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

www.aristilabs.com

Contents
Executive Summary ... 6

Summary of Results .. 6

Conclusion ... 6

Web Application & Infrastructure Vulnerability Assessment .. 7

Target Information .. 7

Methodology .. 7

Testing Setup .. 7

List of vulnerabilities .. 8

1. An administrative user for the blog with weak credentials was identified 9

Mapping to OWASP/CWE ... 9

Severity .. 9

Technical Description ... 9

Proof of Concept .. 10

So what? ... 11

Mitigation ... 11

References .. 11

2. Multiple SoftwareName Admin users have weak passwords .. 12

Mapping to OWASP/CWE ... 12

Severity .. 12

Technical Description ... 12

Proof of Concept .. 12

So what? ... 13

Mitigation ... 13

References .. 13

3. MySQL password found in cleartext in a world readable file on the server 14

Mapping to OWASP/CWE ... 14

Severity .. 14

Technical Description ... 14

Proof of Concept .. 14

So what? ... 14

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

www.aristilabs.com

Mitigation .. 15

References: .. 15

4. Application is vulnerable to Clickjacking attacks .. 16

Mapping to OWASP/CWE ... 16

Severity ... 16

Technical Description .. 16

Proof of Concept ... 16

So what? ... 17

Mitigation .. 18

References .. 18

5. Sensitive system information leaked via log files exposed over the Internet 19

Mapping to OWASP/CWE ... 19

Severity .. 19

Technical Description ... 19

Proof of Concept .. 20

So what? ... 20

Mitigation ... 21

References .. 21

6. Web Application and Database backup found as world readable files on the server 22

Mapping to OWASP/CWE ... 22

Severity .. 22

Technical Description ... 22

Proof of Concept .. 22

So what? ... 23

Mitigation ... 23

References .. 23

7. WordPress blog username enumeration possible ... 24

Mapping to OWASP/CWE ... 24

Severity .. 24

Technical Description ... 24

Proof of Concept .. 24

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

www.aristilabs.com

So what? ... 25

Mitigation ... 25

References ... 26

8. WordPress version older than current stable (readme.html found) .. 27

Mapping to OWASP/CWE ... 27

Severity ... 27

Technical Description .. 27

Proof of Concept ... 27

So what? ... 27

Mitigation .. 28

References ... 28

9. SoftwareName version older than current stable ... 29

Mapping to OWASP/CWE ... 29

Severity .. 29

Technical Description ... 29

Proof of Concept .. 29

So what? ... 29

Mitigation ... 30

References .. 30

10. Missing HSTS header from HTTPS Server .. 31

Mapping to OWASP/CWE ... 31

Severity .. 31

Technical Description ... 31

Proof of Concept .. 31

So what? ... 31

Mitigation ... 31

Reference ... 32

11. World writable directories discovered with weak permissions .. 33

Mapping to OWASP/CWE ... 33

Severity .. 33

Technical Description ... 33

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

www.aristilabs.com

Proof of Concept .. 34

So what? ... 34

Mitigation ... 34

References .. 34

12. Web server exposes its version number via response headers & body 35

Mapping to OWASP/CWE ... 35

Severity ... 35

Technical Description .. 35

Proof of Concept ... 35

So what? ... 36

Mitigation .. 36

References ... 36

13. Older versions of JavaScript libraries being used ... 37

Mapping to OWASP/CWE ... 37

Severity ... 37

Technical Description ... 37

Proof of Concept .. 37

So what? ... 38

Mitigation ... 38

References .. 38

Conclusion ... 39

Annexure 1: Artefacts created on the client-name server and application .. 40

Annexure 2: Password list used to brute force WordPress login ... 41

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

www.aristilabs.com

1. Executive Summary
We were contracted by client-name to conduct Web Application and Infrastructure Vulnerability

Assessment to determine if there were security weaknesses in the client-name website that can render

the application insecure and allow an attacker to gain access to any data that is accessible via them or

gain access to the underlying operating system.

The hosting infrastructure of the client-name website was also subjected to an External Vulnerability

Assessment to simulate a real-world attacker trying to find vulnerabilities and flaws.

The assessment was carried out between date 1 and date 2 on the production web application at

www.samplereport.co

OWASP Top 10 2013 was the reference frame work to evaluate and categorise the security issues.

Summary of Results

• The application was found to use weak credentials for its administrative accounts that resulted in a

complete compromise of the application.

• There are a few security controls missing in places, especially around the implementation of security

HTTP response headers.

• The current configuration of the application has multiple directories with world writable permissions on

the server; i.e. any user on the server can write, delete and modify files in the web application.

• Multiple log files containing sensitive information were found on the server, that can be accessed by

anyone with a link to the log files, revealing the internal workings of the website.

Conclusion
The web application present doesn’t have the security controls to ensure protection against dictionary

attacks and brute forcing of the login details. Additionally, weak password policy allowed full access to

the application. Once we could login we were able to take over the application and run operating system

commands on the server as a limited user.

Using the ability to run commands on the server, we could find additional vulnerabilities affecting the

system, including directories that could be modified by any user on the system, weak passwords for the

admin console of the SoftwareName app and backup files that contain a lot of sensitive information that

could be accessed by any system user.

All these vulnerabilities have resulted in a system that is vulnerable to attack and full server

compromise. These issues need to be fixed as a priority. Fixing these issues will give assurance to the

users of this application.

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

http://www.samplereport.co/

www.aristilabs.com

2. Web Application & Infrastructure Vulnerability Assessment
Target Information

The purpose of this Web Application Security Testing and Vulnerability Assessment was to discover

weaknesses, identify threats and vulnerabilities and security issues on the in-scope server.

The scope included the following hosts and types of testing:

Host/Product Domain/IP

Address

Platform Software Type of Testing

client-name

Site

www.samplerepor

t.co

Debian

GNU/Linux 8

• Nginx X.X.X

• SoftwareName

X.X.X

• WordPress 4.X.X

Blackbox Web

Application and

Infrastructure

Vulnerability Assessment

Host/Product Domain/IP

Address

Platform Open Ports Type of Testing

client-name Site

Hosting

Infrastructure

www.samplerepor

t.co

Debian

GNU/Linux 8

80, 443 Blackbox Web

Application and

Infrastructure

Vulnerability Assessment

Methodology

Testing Setup
We setup an attacker machine in the UK so that our attack traffic was close to the target. The attack

traffic originated from the UK IP - XX.XX.XX.XX. This IP was provided to client-name before we began

testing. The chain of traffic to the target was as below:

Browser > Burp Suite Pro > Secure SOCKS Tunnel > XX.XX.XX.XX > www.samplereport.co

Our Nessus scanner machine was connected to our UK IP via VPN using a OpenVPN connection to ensure

all scanner traffic would go through the IP and end to end encryption was maintained.

3. List of vulnerabilities
1. An administrative user with weak credentials was identified

2. Multiple SoftwareName Admin users have weak password

3. MySQL password found in cleartext in a world readable file on the server

4. Application is vulnerable to Clickjacking attacks

5. Sensitive system information leaked via log files exposed over the Internet

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

http://www.samplereport.co/
http://www.samplereport.co/
http://www.samplereport.co/
http://www.samplereport.co/

0 1 2 3 4 5 6

High

Medium

Low

Vulnerabilities

High Medium Low

www.aristilabs.com

6. Web Application and Database backup found as world readable files on the server

7. WordPress blog username enumeration possible

8. WordPress version older than current stable (readme.html found)

9. SoftwareName version older than current stable

10. Missing HSTS header from HTTPS Server

11. World writable directories discovered with weak permissions

12. Web server exposes its version number via response headers and body 13. Older versions of JavaScript

libraries being used

Severity Number

High 2

Medium 5

Low 6

4. An administrative user for the blog with weak credentials was

identified
We could login into the client-name WordPress blog using a weak set of credentials. These credentials

were easy to guess allowing us access to the application, data, functionality available within and to the

underlying Operating System as well.

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

www.aristilabs.com

Mapping to OWASP/CWE

OWASP Top 10 2013 – A2 - Broken

Authentication and Session Management

https://www.owasp.org/index.php/Top_10_2 01

3 - A2 -

Broken_Authentication_and_Session_Managem

ent

CWE-521: Weak Password Requirements

https://cwe.mitre.org/data/definitions/521.ht

ml

Severity
High

Technical Description
The WordPress blog of client-name hosted at www.samplereport.co/blog/ is vulnerable to a weak

password attack. The admin panel was accessible using the username and password combination of

admin and DevBrandXX respectively.

The attack approach was as follows:

- At the bottom of the home page at www.samplereport.co we found the text "Powered by

DevCompany"

- We did a Google search for the text and found the www.DevCompany.com website.

- This website had the text DevBrand as an image on the home page.

- Based on the two words, DevCompany and DevBrand we created a password list. This password list had

various numbers appended to these two words (provided in Annexure 2).

- We then used wpscan1 to run a brute force on www.samplereport.co/blog using the default username

admin and the password list that was generated.

- We obtained a successful login with the username and password combination of admin and DevBrandXX

- Once we were logged in with WordPress admin privileges, we added a PHP file that could execute

operating system commands. This file at /wp-content/plugins/xxxxxx/index.php was overwritten by a

possible file integrity checker program

- We created another file that was capable of running operating system commands at

/var/www/samplereport.co/htdocs/upload/filename.php and added some protection to prevent

1 wpscan is a tool that can be used to find vulnerabilities in WordPress. It also supports username

enumeration and brute forcing of logins

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/521.html
https://cwe.mitre.org/data/definitions/521.html
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management

other users from abusing this file.

- To execute a command, use this

URL: www.samplereport.co/upload/filename.php?hash=5d62dbXXa25e1e86XXe36275ea1XX55fec0

50aef1XXa914e25a1c816cXXfd31d&passxxxxxxxxxxxxxx=ifconfig

- This was all possible because of the weak credentials of the admin account.

Proof of Concept

Figure 1: WordPress admin panel login

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

Figure 2: Code execution on the server after logging in as WordPress admin

So what?
An attacker may be able to use a weak password to gain access to the admin panel of the blog. From

there, it is very easy to create PHP files that execute the attacker's code on the server thus allowing

the attacker to run operating system commands on the server. This will result in a total server

compromise.

We achieved this; we created a PHP file that would execute operating system commands on the

server resulting in the compromise of user data and system resources without detection.

Mitigation
1. Change the passwords of the admin and other accounts.

2. Enforce usage of strong passwords. A password strength policy should be created using the

recommendations as provided by the OWASP Authentication cheat sheet.

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

References
A great reference provided by OWASP is the PassFault website. This website allows you to analyse

different types of passwords to get an idea on what is secure password. At the very least usernames

or variations of that shouldn’t be allowed to be set as passwords in any application.

•

https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_Complexity •
http://www.passfault.com/

5. Multiple SoftwareName Admin users have weak passwords
We could identify several SoftwareName admin accounts with weak passwords.

Mapping to OWASP/CWE

OWASP Top 10 2013 – A2 - Broken

Authentication and Session Management

https://www.owasp.org/index.php/Top_10_201

3 - A2 -

Broken_Authentication_and_Session_Managem

ent

CWE-521: Weak Password Requirements

https://cwe.mitre.org/data/definitions/521.ht

ml

Severity
High

Technical Description
Multiple admin users were discovered who had their password set to DevBrandXX. An attacker can

use an admin account with this password to become a SoftwareName admin and gain complete

control over the application.

The password is stored in the DB in the form of md5(salt+password). The salt is

473AI8Pho0rMxTWKFXXqfE6DFHYWhopXXgp26TFHobzD8NXX6UyguABi as obtained from the

settings.inc.php file. The md5 value of the salt and 'DevBrandXX' combination is

97bb0a177523XXfbf6633a713caXX953. This value was searched through the xx_xxxxxxx table in

the database and multiple entries were found.

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/521.html
https://cwe.mitre.org/data/definitions/521.html
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
http://www.passfault.com/
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_Complexity

Proof of Concept

Figure 3: The SoftwareName admin users with the password 'DevBrandXX'

So what?
An attacker may be able to use a weak password and gain access to the admin panel of the shop.

From there, it is very easy to view and edit customer data, transactions, shopping history, the look

and feel of the site, the UI and the menus etc. Gaining access to a set of admin credentials will result

in a total application compromise.

Mitigation
1. Change the passwords of the admin and other accounts.

2. Enforce usage of strong passwords. A password strength policy should be created using the

recommendations as provided by the OWASP Authentication cheat sheet.

References
A great reference provided by OWASP is the PassFault website. This website allows you to analyse

different types of passwords to get an idea on what is secure password. At the very least usernames

or variations of that shouldn’t be allowed to be set as passwords in any application.

•

https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_Complexity •
http://www.passfault.com/

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

http://www.passfault.com/
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_Complexity

6. MySQL password found in cleartext in a world readable file on the

server
A file containing MySQL credentials was discovered on the web server in a world readable file. Any

user who has access to the server can read the files to obtain the database credentials.

Mapping to OWASP/CWE

OWASP Top 10 2013 – A6-Sensitive Data

Exposure

https://www.owasp.org/index.php/Top_10_201

3 - A6 - Sensitive_Data_Exposure

CWE-285: Improper Authorization

https://cwe.mitre.org/data/definitions/285.ht

ml

Severity
Medium

Technical Description
The following files have MySQL credentials in plaintext. These files have world readable permissions:

/home/ samplereport /xxxx/yyyyyy_aabb_zzzzfiles.sh /home/

samplereport /xxxx/yyyyyy_zzzzfiles.sh

The MySQL credentials discovered were:

usr_web:Xy123X1xyz4X

Proof of Concept

Figure 4: MySQL credentials discovered in a plaintext file on the server

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/285.html
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

So what?
A user with limited privileges can read these files and obtain the username and password to connect

to the MySQL database. Once connected, the user will have the ability to see and access all data

regarding the client-name blog and shop. This data includes user information, shopping history and

payment information if any.

Mitigation
Change the permission on these files so that other users cannot read them. Also, use the

mysql_config_editor2 to generate a MySQL configuration file that contains the encrypted value of

the password. The permissions on this file should also be restricted to prevent access by other

users.

References:

• https://cwe.mitre.org/data/definitions/521.html

• https://opensourcedbms.com/dbms/passwordless - authentication - using mysql_config_editor - with -

mysql - 5 - 6/

2 mysql_config_editor is a program that gets installed as part of the mysql-client suite of utilities. To install this

utility, run sudo apt-get install mysql-client-5.6

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://opensourcedbms.com/dbms/passwordless-authentication-using-mysql_config_editor-with-mysql-5-6/
https://cwe.mitre.org/data/definitions/521.html

7. Application is vulnerable to Clickjacking attacks
The X-Frame-Options header that has not been set on the application. If a page fails to set an

appropriate X-Frame-Options, it can be possible for a page controlled by an attacker to load it within

an iframe. This may enable a clickjacking attack, in which the attacker's page overlays the target

application's interface with a different interface provided by the attacker.

Mapping to OWASP/CWE

OWASP Top 10 2013 – A5-Security

Misconfiguration

https://www.owasp.org/index.php/Top_10_201

3 - A5 - Security_Misconfiguration

CWE-693: Protection Mechanism Failure

https://cwe.mitre.org/data/definitions/693.ht

ml

CWE-451: User Interface (UI)

Misrepresentation of Critical Information

https://cwe.mitre.org/data/definitions/451.ht

ml

Severity
Medium

Technical Description
The application server does not set the X-Frame-Options header allowing the application to be

loaded in an iframe. This can lead to Clickjacking attacks where the attacker can trick a user to click

on HTML elements in the application by loading it in a hidden iframe.

Proof of Concept

Figure 5: Missing X-Frame Options Header in HTTP Response

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/451.html
https://cwe.mitre.org/data/definitions/451.html
https://cwe.mitre.org/data/definitions/693.html
https://cwe.mitre.org/data/definitions/693.html
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

Figure 6: The client-name user account page loaded in an iframe making clickjacking attacks possible

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

So what?
An attacker can load any of the pages that are available via the application and trick a user to

perform mouse clicks or send keystrokes causing an unwitting action to be performed. An attacker

can target any functionality of the application that a user has access to by tricking the user into

performing mouse clicks or send keystrokes that can result in adding of new data or

modifying/deleting existing information available in the application.

Mitigation
To effectively prevent framing attacks, the application should return a response header with the

name X-Frame-Options and the value DENY to prevent framing altogether, or the value SAMEORIGIN

to allow framing only by pages on the same origin as the response itself. This can be done in nginx by

adding the following to the nginx.conf or the site configuration file in the sites-enabled

directory, in the server section:

 add_header X-Frame-Options SAMEORIGIN;

References

• https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

• http://blog.kotowicz.net/2009/12/5 - ways - to - prevent - clickjacking - on - your.html

• https://geekflare.com/add - x - frame - options - nginx/

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://geekflare.com/add-x-frame-options-nginx/
https://geekflare.com/add-x-frame-options-nginx/
https://geekflare.com/add-x-frame-options-nginx/
https://geekflare.com/add-x-frame-options-nginx/
https://geekflare.com/add-x-frame-options-nginx/
https://geekflare.com/add-x-frame-options-nginx/
https://geekflare.com/add-x-frame-options-nginx/
https://geekflare.com/add-x-frame-options-nginx/
https://geekflare.com/add-x-frame-options-nginx/
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
http://blog.kotowicz.net/2009/12/5-ways-to-prevent-clickjacking-on-your.html
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

8. Sensitive system information leaked via log files exposed over the

Internet
The client-name application discloses sensitive information via log files that are stored in webroot

and which can be accessed via the browser.

Mapping to OWASP/CWE

OWASP Top 10 2013 – A5-Security

Misconfiguration

https://www.owasp.org/index.php/Top_10_201

3 - A5 - Security_Misconfiguration

CWE-200: Information Exposure

https://cwe.mitre.org/data/definitions/200.ht

ml

Severity
Medium

Technical Description
The www.samplereport.co/log/ directory contains log files that have easy to predict log filenames.

An attacker can enumerate and download these log files since they are in a public facing directory.

These log files contain a wealth of information in the form of error messages, debug messages and

failed queries. Table and database names are disclosed through these log files.

The list of log filenames that we were able to enumerate are

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

12345123_exception.log 12345123_exception.log 12345123_exception.log

12345123_exception.log 12345123_exception.log 12345123_exception.log

Proof of Concept

Figure 7: Log file in a publicly accessible directory

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

Figure 8: One of the log files containing sensitive data. In this case SQL queries that reveal table and column names.

So what?
An attacker can use the error messages contained within these files to perform additional attacks on

the application. These files contained detailed error messages that contain database name, table and

column information and other SQL errors.

Mitigation
Move the log files to a directory outside webroot. Also, make sure that the log files do not contain

any sensitive information like credit card numbers, PII or credentials.

The server can also be configured to prevent .log files from being served using the following

configuration inside the server section of the site configuration file or the nginx.conf file

location ~ \.log$ {
return 403;
}

References

• https://www.owasp.org/index.php/Information_Leakage

• http://stackoverflow.com/questions/8286214/how - to - block - all - file - extensions - of - certain types - on -

nginx

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
http://stackoverflow.com/questions/8286214/how-to-block-all-file-extensions-of-certain-types-on-nginx
https://www.owasp.org/index.php/Information_Leakage

These files have world readable permissions:

/home/xxxx/yyyy/live_backup.sql
/home/xxxx/yyyy/ samplewebsite.tar
/home/xxxx/yyyy/htdocs_XX-XX-XX.tar

To find world readable files run the following command:

9. Web Application and Database backup found as world readable files

on the server
A copy of the database and web application directory were found as backup files in the home

directory of a system user. These files had world readable permissions allowing any user on the

system to access these files and read their contents.

Mapping to OWASP/CWE

OWASP Top 10 2013 – A5-Security

Misconfiguration

https://www.owasp.org/index.php/Top_10_201

3 - A5 - Security_Misconfiguration

CWE-200: Information Exposure

https://cwe.mitre.org/data/definitions/200.ht

ml

Severity
Medium

Technical Description
The following files containing the MySQL database backup and the website backup were found.

find /home/ -type f -perm -o=r -exec ls -ltra {} \;

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

Proof of Concept

Figure 9: Backup files found on the server with world readable permissions

So what?
A user with limited privileges can read these files and gain access to all data that was backed up. The

database backup contains information about the client-name blog and shop. The data in the backups

may include website files, custom source code, user information, shopping history and payment

information.

Mitigation
Change the permission on these files so that other users cannot read them. These files should not be

accessible to non-root users or only to users who have been designated as system backup operators.

References

• https://www.owasp.org/index.php/Information_Leakage

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://www.owasp.org/index.php/Information_Leakage

10. WordPress blog username enumeration possible
It is possible to enumerate the users of the WordPress blog inside the client-name site.

Mapping to OWASP/CWE

OWASP Top 10 2013 – A5-Security

Misconfiguration

https://www.owasp.org/index.php/Top_10_201

3 - A5 - Security_Misconfiguration

CWE-200: Information Exposure

https://cwe.mitre.org/data/definitions/200.ht

ml

Severity
Medium

Technical Description
The WordPress installation does not offer any protection for username enumeration. It was possible

to list the users in WordPress using wpscan and by manual methods as well.

Using wpscan we can enumerate users by running the command: wpscan

-u www.samplereport.co/blog/ --enumerate u

Manually, it is possible to enumerate users by following the redirection of pages when browsing to

the following URLs:

www.samplereport.co/blog/?author=1

www.samplereport.co/blog/?author=2

www.samplereport.co/blog/?author=3

www.samplereport.co/blog/?author=4

www.samplereport.co/blog/?author=5

Proof of Concept

Figure 10: Username enumeration possible via HTTP redirects

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

Figure 11: Username enumeration possible via wpscan

So what?
An attacker can enumerate usernames to attempt password brute force attacks. To brute force and

successfully login into the blog administration portal, two key things are required, a valid username

and its password. This vulnerability exposes the username which can be used in conjunction with a

large password list to brute force the account and login to the application. This will result in the

compromise of the application and consequently with the help of other vulnerabilities that may exist

post login, a compromise of the underlying system.

Mitigation
Block or redirect any requests to /?author using the nginx configuration on the server.

Edit the webserver's configuration to add rules to rewrite the location when an attempt is made to

access the /?author request from the URL. This should be done inside the server section of the

configuration.

An example of the nginx configuration with this enabled is shown below:

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

if ($args ~ "^/?author=([0-9]*)"){
set $rule_0 1$rule_0;
 }
 if ($rule_0 =
"1"){
 rewrite ^/$ www.samplereport.co/blog/404 permanent;
 }

References

• https://www.owasp.org/index.php/Information_Leakage

• http://www.edwiget.name/2013/10/blocking - wordpress - user - enumeration - on - nginx/

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
http://www.edwiget.name/2013/10/blocking-wordpress-user-enumeration-on-nginx/
https://www.owasp.org/index.php/Information_Leakage

11. WordPress version older than current stable (readme.html

found)
The version of WordPress running on the server (4.X.X) is older than the current stable release (4.7).

Mapping to OWASP/CWE

OWASP Top 10 2013 – A9- Using Components

with Known Vulnerabilities

https://www.owasp.org/index.php/Top_10_2013 -

A9 -

Using_Components_with_Known_Vulnerabilities

CWE-200: Information Exposure

https://cwe.mitre.org/data/definitions/200.html

Severity
Low

Technical Description
The website has a sub folder called /blog that has a WordPress instance running. This instance of

WordPress is at version 4.X.X. The latest stable version is 4.7.3 as of XX March 2017.

The version number of the installed WordPress was discovered via the readme.html file located at:

www.samplereport.co/blog/readme.html

Proof of Concept

Figure 12: Version of WordPress is older than current stable release of 4.7 (as of XX March 2017)

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/200.html
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities

So what?
Systems running software with older versions may become vulnerable due to weakness in the

running software. An attacker may use publicly disclosed vulnerabilities to gain access to the

application data or user information resulting in a possible compromise of the application or the

server running the application.

Mitigation
Upgrade to the latest version of WordPress. WordPress administrators receive update notifications

in the admin dashboard which can be used to start the upgrade process. Independently, you can also

obtain the latest version of WordPress from the vendor site at https://wordpress.org/ .

Use the following techniques to remove the version number from the other areas of the application

as well:

1. Delete the readme.html file from webroot as this gives away the version of WordPress.

2. Add the following lines of php code to the end of the functions.php file found in your /wp-
content/themes/your-theme-name/ folder.

remove_action('wp_head',
'wp_generator'); function
remove_version() { return ''; }
add_filter('the_generator', 'remove_version');

References

• https://www.owasp.org/index.php/Top_10_2013 - A9 Using_Components_with_Known_Vulnerabilities

• https://codex.wordpress.org/Updating_WordPress

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://codex.wordpress.org/Updating_WordPress
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://wordpress.org/
https://wordpress.org/

12. SoftwareName version older than current stable
The version of SoftwareName running on the server (X.X.X) is older than the current stable release

(Y.Y).

Mapping to OWASP/CWE

OWASP Top 10 2013 – A9- Using Components

with Known Vulnerabilities

https://www.owasp.org/index.php/Top_10_2013 -

A9 -

Using_Components_with_Known_Vulnerabilities

CWE-200: Information Exposure

https://cwe.mitre.org/data/definitions/200.html

Severity
Low

Technical Description
The website is primarily running a SoftwareName instance. This instance of SoftwareName is at is at

version X.X.X. The latest stable version is Y.Y as of XX March 2017.

The version number of the installed SoftwareName was discovered by reading the contents of

/var/www/samplereport.co /htdocs/config/settings.inc.php

Proof of Concept

Figure 13: Version of SoftwareName is older than current stable release of Y.Y (as of XX March 2017)

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/200.html
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities

So what?
Systems running software with older versions may become vulnerable due to weakness in the

running software. An attacker may use publicly disclosed vulnerabilities to gain access to the

application data or user information resulting in a possible compromise of the application or the

server running the application.

Mitigation
Upgrade to the latest version of SoftwareName.

References

• https://www.owasp.org/index.php/Top_10_2013 -

A9 Using_Components_with_Known_Vulnerabilities

• http://doc.SoftwareName.com/display/PS16/Automatic+update

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

http://doc.prestashop.com/display/PS16/Automatic+update
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities

13. Missing HSTS header from HTTPS Server
The application fails to prevent users from connecting to it over unencrypted connections.

Mapping to OWASP/CWE

OWASP Top 10 2013 – A5-Security

Misconfiguration

https://www.owasp.org/index.php/Top_10_2013 -

A5 - Security_Misconfiguration

CWE – Not available

Severity
Low

Technical Description
The HTTP "Strict-Transport-Security" header is missing in the HTTPS responses from the application

server. The lack of HSTS allows downgrade attacks, SSL-stripping man-in-the-middle attacks, and

weakens cookie-hijacking protections.

Proof of Concept

Figure 14: Missing strict transport security header in the response header

So what?
An attacker able to modify a legitimate user's network traffic could bypass the application's use of

SSL/TLS encryption, and use the application as a platform for attacks against its users. This attack is

performed by rewriting HTTPS links as HTTP, so that if a targeted user follows a link to the site from

an HTTP page, their browser never attempts to use an encrypted connection.

Mitigation
A Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax

Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

The parameter max-age gives the time frame for requirement of HTTPS in seconds and should be

chosen quite high, e.g. several months. The flag includeSubDomains defines that the policy applies

also for sub domains of the sender of the response. This will ensure that a supported browser will

enforce secure connection while communicating with the application.

Reference

• https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

• https://developer.mozilla.org/en - US/docs/Web/HTTP/Headers/Strict - Transport - Security

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

14. World writable directories discovered with weak permissions
Several directories were discovered in the web root folder that had weak permissions set on them.

These directories had world writable permissions set, allowing any user on the system to

add/modify/delete content inside them.

Mapping to OWASP/CWE

OWASP Top 10 2013 – A5-Security

Misconfiguration

https://www.owasp.org/index.php/Top_10_201

3 - A5 - Security_Misconfiguration

CWE-693: Protection Mechanism Failure

https://cwe.mitre.org/data/definitions/693.ht

ml

Severity
Low

Technical Description
Using the shell that was uploaded using the weak WordPress credentials (see vulnerability 1 - An

administrative user for the blog with weak credentials was identified), we could identify directories

that have weak permissions. These permissions allow any user on the system to write to into these

folders.

www.samplereport.co/upload/filename.php?hash=5d62dbXXa25e1e86XXe36275ea1XX55fec050aef

1XXa914e25a1c816cXXfd31d&passxxxxxxxxxxxxxx =ls%20-ltrad%20/var/www/ samplereport.co

/htdocs/*/%20|%20grep%20drwxrwxrwx Without the encoded characters, the URL is

www.samplereport.co/upload/filename.php?hash=5d62dbXXa25e1e86XXe36275ea1XX55fec050aef

1XXa914e25a1c816cXXfd31d&passxxxxxxxxxxxxxx =ls -ltrad /var/www/samplereport.co/htdocs/*/ |

grep drwxrwxrwx

The following directories were found to have world read and writable permissions set

1. /var/www/samplereport.co/htdocs/xxxxxx/

2. /var/www/samplereport.co/htdocs/yyyyyy/

3. /var/www/samplereport.co/htdocs/zzzzzz/

4. /var/www/samplereport.co/htdocs/aaaaaa/

5. /var/www/ samplereport.co /htdocs/bbbbb/

6. /var/www/ samplereport.co /htdocs/cccccc/

7. /var/www/ samplereport.co /htdocs/ddddd/

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/693.html
https://cwe.mitre.org/data/definitions/693.html
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

 Proof of Concept

Figure 15: Several directories in webroot were found to have weak permissions

So what?
A system user can create/edit files inside the directories. A malicious file can be created that steals

client-name shop's user's passwords, tokens or payment information resulting in data and

confidentiality loss for the site's users.

Mitigation
Remove world write permissions on directories inside webroot using the chmod command.

The following is an example of the chmod command to remove world write permission on a folder:

chmod 775 directory_name

So, to remove the world writable permission on /var/www/ samplereport.co /htdocs/
upload folder run the following command:

chmod 775 /var/www/ samplereport.co/htdocs/upload

References

• https://www.owasp.org/index.php/Top_10_2013 - A5 - Security_Misconfiguration

• https://www.owasp.org/index.php/File_System#Insecure_permissions

15. Web server exposes its version number via response headers & body
The server software versions used by the application are revealed by the web server in the response

header and the response body when access restricted folders/files.

Mapping to OWASP/CWE

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://www.owasp.org/index.php/File_System#Insecure_permissions
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

OWASP Top 10 2013 – A5-Security

Misconfiguration

https://www.owasp.org/index.php/Top_10_201

3 - A5 - Security_Misconfiguration

CWE-200: Information Exposure

https://cwe.mitre.org/data/definitions/200.ht

ml

Severity
Low

Technical Description
The webserver is configured to send the version of nginx to the client. The version number is exposed

via the response header and in the body of the page when accessing a restricted directory. The

version number of nginx is X.X.X as obtained from this misconfiguration.

A HTTP response to any page on the site will have the nginx version in the response header as shown

in the screenshots.

A HTTP response to a restricted directory like /backoffice will have the nginx version in the response

body as shown in the screenshots.

Proof of Concept

Figure 16: The HTTP response headers contain version number of the nginx server

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

Figure 17: The HTTP response body contains the version number of the nginx server

So what?
Systems running software with older versions may become vulnerable due to weakness in the

running software. An attacker may use publicly disclosed vulnerabilities to gain access to the

application data or user information resulting in a possible compromise of the application or the

server running the application.

Mitigation
To hide the version of nginx in the response header and body, set the server_tokens value in the

nginx configuration file to Off. This will prevent the server from disclosing the version information.

The nginx configuration file is present at /etc/nginx/nginx.conf

References

1. https://www.owasp.org/index.php/Information_Leakage

2. https://www.digitalocean.com/community/tutorials/how - to - secure - nginx - on - ubuntu - 14 - 04

16. Older versions of JavaScript libraries being used
The client-name SoftwareName application as well as the WordPress blog, both use older versions of

JavaScript libraries that are vulnerable to attacks.

The JavaScript file jquery-X.X.X.min.js and the JavaScript file jquery-migrate-X.X.X.min.js include a

vulnerable version of the library 'jquery'.

Mapping to OWASP/CWE

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-on-ubuntu-14-04
https://www.owasp.org/index.php/Information_Leakage

OWASP Top 10 2013 – A9- Using Components

with Known Vulnerabilities

https://www.owasp.org/index.php/Top_10_2013 -

A9 -

Using_Components_with_Known_Vulnerabilities

CWE-200: Information Exposure

https://cwe.mitre.org/data/definitions/200.html

Severity
Low

Technical Description
The application uses older versions of the jQuery library. The versions found to be in use are jQuery -

v X.X.X and jQuery migrate - v X.X.X. The version numbers can be obtained by accessing the files at:

www.samplereport.co/js/jquery/jquery-migrate-X.X.X.min.js www.samplereport.co/js/jquery/jquery-

X.X.X.min.js

Proof of Concept

Figure 18: jQuery version at X.X.X

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://cwe.mitre.org/data/definitions/200.html
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities

Figure 19: jQuery-migrate at v X.Y.X

So what?
It may be possible for an attacker to load JavaScript in the browser using a jQuery call. This JavaScript

can be used to perform any action as a client-name user since it will be running in the context of the

client-name website.

Ideally, using JQuery, applications should not be able to execute JavaScript from third party domains.

Mitigation
Update to the latest version of JQuery via the vendor site: https://jquery.com/download/. The

current version, as of this report, is 3.2.0 (as of XX March 2017)

References

• https://www.owasp.org/index.php/Top_10_2013 - A9 -

Using_Components_with_Known_Vulnerabilities

17. Conclusion
The application at https://www.samplereport.co and its hosting infrastructure were subjected to a

Web Application Security Test and a Vulnerability Assessment to identify weaknesses that can render

the application insecure and allow an attacker to gain access to any data that is accessible via them

or gain access to the underlying operating system.

The web application present doesn’t have the security controls to ensure protection against

dictionary attacks and brute forcing of the login details. Additionally, weak password policy allowed

full access to the application. Once we could login we were able to take over the application and also

run operating system commands on the server as a limited user.

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

https://www.samplereport.co/
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities

Using the ability to run commands on the server, we were able to find additional vulnerabilities

affecting the system, including directories that could be modified by any user on the system, weak

passwords for the admin console of the SoftwareName app and backup files that contain a lot of

sensitive information that could be accessed by any system user.

All these vulnerabilities have resulted in a system that is vulnerable to attack and full server

compromise. These issues need to be fixed as a priority. Fixing these issues will give assurance to the

users of this application.

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

18.Annexure 1: Artefacts created on the client-name server and

application
The following objects were created either on the server or in the application. Please remove them

once verification of this report has been completed.

1. Backdoor shell at /var/www/samplereport.co/htdocs/upload/xxx.php

This file was created to run commands on the operating system as part of the assessment. All

commands that were run were non-intrusive. No other files were created on the server apart

from this file.

This file can be accessed using a web browser and a secret hash. For example

www.samplereport.co/upload/filename.php?hash=5d62dbXXa25e1e86XXe36275ea1XX55fec05

0aef1XXa914e25a1c816cXXfd31d&passxxxxxxxxxxxxxx =ifconfig

2. A user with username yyyyyyyy@xxxxxxxx.com was created as part of the test. This user was

created on the client-name SoftwareName instance using the register new user functionality of the

application.

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

19. Annexure 2: Password list used to brute force WordPress login
The following list of strings were put into a file called passwordlist.txt and used to brute force the

login for the WordPress admin user.

DevCompany
DevCompany
DevCompany
DevCompany
DevBrand
DevBrand
DevCompany0
DevCompany0
DevCompany0
DevCompany0
DevBrand0
DevBrand0
DevCompany1
DevCompany1
DevCompany1
DevCompany1
DevBrand1
DevBrand1
DevCompany00
DevCompany00
DevCompany00
DevCompany00
DevBrand00
DevBrand00
DevCompany11
DevCompany11
DevCompany11
DevCompany11
DevBrand11
DevBrand11

©Client_Name | Penetration test report by Aristi Cybertech Private Limited

	1. Executive Summary
	Summary of Results
	Conclusion

	2. Web Application & Infrastructure Vulnerability Assessment
	Target Information
	Methodology
	Testing Setup

	3. List of vulnerabilities
	4. An administrative user for the blog with weak credentials was identified
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	5. Multiple SoftwareName Admin users have weak passwords
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	6. MySQL password found in cleartext in a world readable file on the server
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References:

	7. Application is vulnerable to Clickjacking attacks
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	8. Sensitive system information leaked via log files exposed over the Internet
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	9. Web Application and Database backup found as world readable files on the server
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	10. WordPress blog username enumeration possible
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	11. WordPress version older than current stable (readme.html found)
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	12. SoftwareName version older than current stable
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	13. Missing HSTS header from HTTPS Server
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	Reference

	14. World writable directories discovered with weak permissions
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	15. Web server exposes its version number via response headers & body
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	16. Older versions of JavaScript libraries being used
	Mapping to OWASP/CWE
	Severity
	Technical Description
	Proof of Concept
	So what?
	Mitigation
	References

	17. Conclusion
	18. Annexure 1: Artefacts created on the client-name server and application
	19. Annexure 2: Password list used to brute force WordPress login

